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Abstract: Efficient public transportation systems are critical for urban mobility, requiring precise bus arrival time predictions to 

enhance service quality and passenger satisfaction. This study thoroughly investigates predictive modeling utilizing machine learning 

methodologies to forecast bus arrival times along a specific route in Phnom Penh, Cambodia. The dataset contains historical bus 

arrival data from a specific route, including journey duration, hour of day, day of the week, distance, speed, current bus stop, next 

bus stop, and weather conditions. The predictive models of this research are built using machine learning methods such as linear 

regression, XGBoost, support vector machine (SVM), k-nearest neighbors (KNN), and artificial neural network (ANN). These 

algorithms are used to create prediction models, which are fine-tuned to yield the most accurate estimates of bus arrival times. The 

usefulness of these models is systematically tested using common performance metrics such as the Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE), offering a full assessment of predicting. Extensive 

experimentation data shows the best performance of XGBoost model, which consistently outperforms other machine learning methods 

in accurately estimating bus arrival times, with an MAE of 16 seconds, an RMSE of 28.03 seconds, and a MAPE of 2.61%. Our 

findings contribute to the development of predictive modeling tools in urban transportation planning and management. This study 

provides a vital tool for improving the performance and sustainability of Phnom Penh’s public transit systems by using the power of 

machine learning and considering a wide range of parameters, including those not covered by traditional datasets. 
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1. INTRODUCTION1 

The increasing effectiveness of Intelligent Transport System 

(ITS) solutions underscores the necessity for a real-time 

transportation information system, which, by providing 

commuters with timely information, enhances travel planning, 

reduces bus waiting times, and optimizes the use of public 

transport [1]. The precise estimation of link travel time holds 

paramount importance in ITS transit applications, particularly 

with the advancement of Advanced Travelers Information 

Systems (ATIS), which has significantly increased the 

importance of short-term travel time prediction, leading to the 

development of a variety of prediction models such as historical 

data-based models, regression models, time series models, and 
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neural network models by diverse transit agencies over the years 

[2]. This research addresses the critical need for accurate bus 

arrival time forecasting by employing comprehensive predictive 

modeling methods based on machine learning techniques.  

Advanced technologies now enable transit agencies to 

acquire real-time bus information, reducing passenger journey 

times and improving service levels, leading to a growing interest 

in using electronic information and communication technologies 

to provide passengers with real-time arrival information for more 

efficient and informed travel planning [3]. The study aims to 

provide transit agencies with valuable data to optimize bus 

schedules and routes, ultimately improving service quality and 

passenger satisfaction in Phnom Penh, Cambodia. Phnom Penh 

City Bus, a public transportation network serving urban areas, 
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grew quickly in the following years, covering 21 routes by 2024 

[4]. Furthermore, this research seeks to enhance the efficiency 

and reliability of public transportation such as Phnom Penh City 

Bus.  

Predictive modeling for bus arrival time prediction is a 

growing field of study in transportation engineering and data 

science. This field involves using a variety of machine learning 

methods, each with unique characteristics, to capture the 

complex dynamics of urban traffic and transit networks. A 

diverse range of methodologies, such as Time Series Regression 

(TSR), Artificial Neural Network (ANN), Kalman Filter (KF), 

Support Vector Machine (SVM), and others [5] were utilized to 

construct a suite of regression models designed to predict the 

arrival time of buses traveling between two specified points 

along a route [5,6]. The regression model assumption of 

independence among different factors is often unrealistic [7]. A 

study by Yin et al. 2017 considered Kalman Filter model for 

predicting travel time [8], but we did not consider it in this study 

due to its limited ability to handle non-linear relationships and 

its reliance on assumptions that may not hold in complex. The 

Support Vector Machine method offers clear advantages in 

addressing challenges such as small sample sizes, nonlinearity, 

and multivariable classification and regression problems [9], yet 

its performance is profoundly influenced by the parameters 

governing the training process [10,11]. The k-NN method was 

formulated, with findings indicating its capacity to enhance the 

accuracy of bus arrival time prediction [6]. The prediction 

outcomes are contrasted with those of the gradient boosting 

model, revealing that the XGBoost model demonstrates superior 

performance in terms of both accuracy and efficiency [12]. The 

reliability analysis demonstrated that enhanced ANNs exhibit 

accurate performance for predicting both single and multiple 

stops, with the stop-based ANN being preferred in scenarios 

involving multiple intersections between stops, while the link-

based ANN is better suited for pairs of stops with fewer 

intersections [13]. The ANN model utilized arrival time, dwell 

time, schedule adherence, and distance as primary predictors 

[14], which tends to result in high prediction error rates during 

adverse traffic conditions due to the model’s lack of adaptation 

to changing traffic conditions [2]. The ANN achieved better 

prediction accuracy than both the historical data-based model 

and the regression model, which presented a freeway travel time 

prediction framework that integrated a state-space neural 

network with preprocessing strategies employing imputation 

[3,15]. 

2. METHODOLOGY 

2.1 Raw Dataset 

The raw dataset contains historical bus arrivals for route 

11A from Sangkat Pong Tuek to Sangkat Tual Svay Prey II. It 

stretches around 16.4 kilometers and serves 19 bus stations. It 

provides essential information on the route’s operational 

features. GPS tracking was used on city buses to collect data for 

two months, from July to August 2023. Table 1 describes the raw 

dataset, which combines data from GPS and weather sources. 

The original dataset contains many attributes, but significant 

attributes have been selected for this research. The key attributes 

used are latitude, longitude, date, time, and weather conditions.  

Table 1. Raw dataset 

2.2 Data Preprocessing  

The data preprocessing involves amalgamating historical 

GPS data with meteorological information. To enrich the dataset 

and offer deeper insights into travel dynamics, new variables are 

derived to expand the information on trip characteristics. The 

Haversine formula  is used to calculate distances between 

successive Global Positioning System (GPS) coordinates [16], 

calculated using   Eq. 1. However, bus route maps are not always 

straightforward due to the complexity of corners and curves, so 

to ensure accurate distance estimation, several additional points 

are included throughout the route by interpolating longitude and 

latitude values. 

where: 

𝑑 :    the distance between two points  

𝜙 :    the longitude  

𝜆 :    the latitude  

𝑅 :    the radius of the earth 

The average speed between stops is determined, providing 

useful information about travel velocity along various segments 

of the route. Finally, weather data is fully concatenated with the 

information using timestamps, adding contextual depth with 

variables like cloudy and rainy conditions. By methodically 

following these preprocessing steps, a comprehensive dataset is 

created, setting the groundwork for the construction of accurate 

predictive models customized to bus arrival times.  

Table 2 presents a processed dataset focusing on bus arrival 

times, consolidating various features derived from Table 1. The 

dataset includes key attributes following preprocessing, such as 

current bus stop identifiers, next bus stop identifiers, 

Latitude Longitude Date Time Weather 

11.46428 104.81640 2023-07-20 17:04:16 Cloudy 

11.46484 104.82040 2023-07-20 17:05:22 Cloudy 

11.46437 104.81637 2023-07-21 09:53:17 Light rain 

11.48765 104.85140 2023-07-21 09:59:05 Light rain 

11.46430 104.81648 2023-08-01 11:03:06 Cloudy 

11.55199 104.90270 2023-08-01 11:22:32 Cloudy 

𝑑 = 2𝑅 arcsin (√sin2 (
𝜙2−𝜙1

2
) + cos 𝜙1 cos 𝜙2 sin2 (

𝜆2−𝜆1

2
)) (Eq.1) 
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geographical coordinates (current latitude, current longitude, 

next latitude, next longitude), distance between stops, average 

speed, trip identifiers, hour of day, day of the week, weather 

conditions, and trip durations. This consolidation ensures 

comprehensive data readiness for subsequent analyses related to 

bus route optimization and operational efficiency. The dataset is 

separated into features and a target variable, which is the arrival 

time. A method is employed to randomly partition the dataset, 

allocating 80% of the arrival time dataset for training and 20% 

for testing.    

Table 2. Processed dataset of bus arrival time 

 

2.3 Prediction Models 

The study investigates the application of various machine 

learning techniques such as linear regression, XGBoost, Support 

Vector Machine, K-Nearest Neighbors, and Artificial Neural 

Network to develop predictive models. The study focuses on 

analyzing historical data to train and test these models. Each 

algorithm’s performance in predicting bus arrival times is 

evaluated, providing insights into their effectiveness in this 

specific context. This research contributes to the advancement of 

predictive modeling in transportation systems, particularly in 

urban environments such as Phnom Penh, by exploring the 

efficacy of different machine learning approaches. 

2.3.1 Linear Regression  

Linear regression (LR), a fundamental technique in both 

statistical analysis and machine learning, serves to estimate the 

dependent variable using a linear combination of independent 

factors, essentially optimizing a line to minimize prediction 

disparities [17]. The equation of linear regression is expressed 

as: 

 
𝑦 = 𝜀 + 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑛

𝑖=1

 (Eq. 2) 

The linear regression equation encompasses the predicted arrival 

time 𝑦, an error term 𝜀, an intercept 𝛽0, and a coefficients 𝛽𝑖 for 

each independent variable 𝑥𝑖. The intercept 𝛽0 represents the 

expected arrival time when all independent variables are zero, 

while the coefficients 𝛽𝑖 indicate the impact of each independent 

variable on the arrival time. By estimating the coefficients that 

minimize the error term, linear regression provides a model that 

can be used to forecast bus arrival times based on the given 

independent variables. 

2.3.2 XGBoost  

Gradient boosting, a machine learning technique, constructs 

predictive models by aggregating weak prediction models, 

typically decision trees, to enhance performance across 

regression and classification tasks [18,19]. The main objective 

function is defined as follows [20]: 

 ℒ = ∑ 𝐿(𝑦𝑖 , 𝐹(𝑥𝑖)) + ∑ Ω(𝑓𝑘)

𝑡

𝑘=1

𝑛

𝑖=1

+ 𝐶 (Eq. 3) 

where Ω(𝑓𝑘) denotes the regularization term, with 𝐶 being a 

constant that can be optionally removed.  

The regularization term Ω(𝑓𝑘) is   

 Ω(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2

𝑇

𝑗=1

 (Eq. 4) 

In this context, 𝛾 represents the penalty associated with the 

complexity of the tree’s leaves, while 𝑇 denotes the total number 

of leaf nodes. The term 𝜆 is the regularization parameter that 

adds a penalty to prevent overfitting, and 𝑤𝑗  signifies the output 

values assigned to each leaf node. Leaf nodes, which are terminal 

nodes in the tree, correspond to the final predicted categories 

based on the classification criteria and cannot be further split. 

In XGBoost, the loss function is enhanced by incorporating 

the second-order Taylor expansion, which includes both first-

order and second-order derivatives to improve optimization 

accuracy [20]. When using the mean squared error (MSE) as the 

loss function [20], the primary function is expressed as: 

ℒ = ∑ [𝑔𝑖𝑤𝑞(𝑥𝑖) +
1

2
(ℎ𝑖𝑤𝑞(𝑥𝑖)

2 )]

𝑛

𝑖=1

+ 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2

𝑇

𝑗=1

 (Eq. 5) 

Current 

Bus Stop  

Next  

Bus Stop  

Current 

Latitude 

Current 

Longitude 

Next 

Latitude 

Next 

Longitude 
Distance Speed Trip 

Hour of 

Day 

Day of 

Week 

Weather 

Condition 

Trip 

duration 

11A_1 11A_2 11.46453 104.81657 11.46483 104.82052 0.4961 0.744 1 6 15 Cloudy 40 

11A_1 11A_3 11.46453 104.81657 11.46325 104.82602 1.1667 0.707 1 6 15 Cloudy 99 

11A_1 11A_4 11.46453 104.81657 11.46250 104.83288 2.0589 0.730 1 6 15 Cloudy 169 

11A_2 11A_3 11.46483 104.82052 11.46325 104.82602 0.6706 0.682 1 6 15 Cloudy 93 

11A_2 11A_4 11.46483 104.82052 11.46250 104.83288 1.5628 0.726 1 6 15 Cloudy 129 

11A_2 11A_5 11.46483 104.82052 11.46986 104.84461 3.1717 0.734 1 6 15 Cloudy 259 

11A_3 11A_4 11.46325 104.82602 11.462506 104.83288 11.549 0.772 1 6 15 Cloudy 65 
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where 𝑞(𝑥𝑖) is a function that maps data points to leaves, 𝑔𝑖 and 

ℎ𝑖 represents loss function’s first and second derivatives, 

respectively.  

The overall loss value in a decision tree model is determined 

by summing the contributions from all individual leaf nodes 

[20]. Since each sample in the decision tree corresponds to a leaf 

node, the final loss is derived from aggregating the loss values 

across these leaf nodes. Consequently, the loss function for the 

model can be expressed as follows: 

 ℒ = ∑ [𝐺𝑗𝑤𝑗 +
1

2
(𝐻𝑗 + 𝜆)𝑤𝑗

2]

𝑇

𝑗=1

+ 𝛾𝑇 (Eq. 6) 

where 𝐺𝑗 = ∑ 𝑔𝑖𝑖∈𝐼𝑗
𝐻𝑗 = ∑ ℎ𝑖𝑖∈𝐼𝑗

, and 𝐼𝑗  are the total number of 

samples in leaf node 𝑗. 

2.3.3 Support Vector Machine  

Support Vector Machine, in short SVM, a learning theory 

grounded in statistics and employing the principle of structural 

risk minimization, exhibits superior generalization prowess 

through the utilization of high-dimensional linear functions, 

facilitating the capture of intricate data patterns with greater ease 

compared to alternative models [10,21,22].  

 𝑦 = 𝑓(𝑥) = ∑(𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖 , 𝑥) + 𝑏

𝑛

𝑖=1

 (Eq. 7) 

Eq. 7 presents the function 𝑓(𝑥), which is defined as a 

summation over 𝑛 terms, each representing the weighted 

similarity between an input data point 𝑥 and a set of data points 

𝑥𝑖. These similarities are computed using a kernel function 

denoted by 𝐾, with the linear kernel being specified in Eq. 8. In 

this equation, 𝑓(𝑥) is expressed as the sum of the products of the 

differences between corresponding coefficients 𝛼𝑖 and 𝛼𝑖
∗, and 

linear kernel 𝐾(𝑥𝑖 , 𝑥), along with an additional offset term 𝑏.  

 𝐾(𝑥𝑖 , 𝑥) = 𝑥𝑖 ∙ 𝑥 (Eq. 8) 

This mathematical representation aids in understanding the 

function approximation process in support vector machine, 

particularly in discerning between different classes of data points 

in classification tasks. 

2.3.4 K-Nearest Neighbors  

The prediction method using K-Nearest Neighbors (KNN) 

involves selecting past sequences from the time series that 

closely resemble the current sequence and integrating their 

future values to forecast the next value in the current sequence 

[6,23]. 

𝑑(𝑥, 𝑥𝑖) = ∑|𝑥𝑗 − 𝑥𝑖𝑗|

𝑛

𝑗=1

 (Eq. 9) 

As shown in Eq. 9, 𝑑(𝑥, 𝑥𝑖) is a distance metric measuring 

the dissimilarity between an input vector 𝑥 and a reference vector 

𝑥𝑗 across 𝑛 dimensions. The metric computes the sum of absolute 

differences between corresponding components of 𝑥 and 𝑥𝑗, 

crucial for determining proximity in feature space.  

𝑦 =
1

𝑘
∑ 𝑦𝑖

𝑘

𝑖=1

 (Eq. 10) 

Additionally, Eq. 10  outlines how KNN predicts 𝑦, the 

output variable of interest. By averaging the target values 𝑦𝑖  from 

the 𝑘 nearest neighbors of 𝑥, the algorithm determines 𝑦. This 

averaging process reflects KNN’s principle of predicting based 

on the average value of nearby data points, emphasizing its 

simplicity and effectiveness in handling non-linear decision 

boundaries and diverse data distributions. 

2.3.5 Artificial Neural Network  

The Artificial Neural Network (ANN) consists of an input 

layer, hidden layers, and an output layer with a single neuron, as 

illustrated in Fig. 1. This research explores variations in the 

number of hidden layers to assess how the depth of the network 

influences its ability to capture complex patterns and 

relationships in the data. By increasing the number of hidden 

layers, the model gains additional capacity to represent intricate 

functions, which may enhance its predictive accuracy. However, 

this also introduces the risk of overfitting, making it essential to 

carefully balance model complexity with generalization. The 

study aims to determine the optimal number of hidden layers that 

offers the best trade-off between model performance and 

computational efficiency. 

 

 

Fig. 1. Artificial Neural Network architecture 
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In the proposed ANN models for predicting bus arrival 

times in this study, the input features are normalized, consisting 

of twelve variables (i.e., i=12), while the target output is a single 

variable representing the bus arrival time. The models differ in 

the number of hidden layers, with configurations of one, two, and 

three hidden layers (i.e., h=1, 2, 3). The sigmoid function is used 

as the activation function within the hidden layers. 
 

𝑦 = 𝑓𝑠𝑖𝑔 {𝑏0 + ∑ [𝑤𝑘 × 𝑓𝑠𝑖𝑔 (𝑏ℎ𝑘 + ∑ 𝑤𝑖𝑘𝑋𝑖

𝑚

𝑖=1

)]

ℎ

𝑘=1

} (Eq. 11) 

Eq. 11 presents a foundational formulation of a neural 

network model, where 𝑦 signifies the network’s output, shaped 

by the application of a sigmoid activation function 𝑓𝑠𝑖𝑔(𝑧) to a 

weighted sum. This sum incorporates biases 𝑏0 and 𝑏ℎ𝑘  along 

with inputs 𝑋𝑖 weighted by coefficients 𝑤𝑖𝑘  and 𝑤𝑘.  

𝑓𝑠𝑖𝑔(𝑧) =
1

1 + 𝑒−𝑧 (Eq. 12) 

The sigmoid function 𝑓𝑠𝑖𝑔(𝑧) as defined in Eq. 12 operates 

to confine outputs within the (0, 1) interval, facilitating the 

modeling of non-linear relationships and the capture of intricate 

data patterns.  

2.4 Hyperparameter Tuning 

The hyperparameters tuning is critical in improving the 

performance of machine learning models. Grid search cross-

validation (GridSearchCV) was utilized to select the optimal 

model for each machine learning approach, and the parameters 

yielding the best cross-validation performance were then used to 

automatically fit a new model to the entire training dataset [24]. 

GridSearchCV was used to identify the best hyperparameters 

value for this study. Table 3 shows the optimal hyperparameters 

of proposed machine learning models such as XGBoost, KNN, 

SVM, and ANN were optimized using grid search within a 

defined search space. Each algorithm’s hyperparameters were 

systematically tuned to achieve optimal predictive performance 

and generalization. This process highlights the importance of 

thorough hyperparameter tuning in enhancing the effectiveness 

of machine learning models. 

Table 3. The optimal hyperparameters of proposed machine learning models 

 

2.4 Evaluation metrics 

Evaluation metrics are vital tools for assessing the 

effectiveness of predictive models. Three commonly used 

metrics for this purpose are Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE), and Mean Absolute Percentage 

Error (MAPE). 

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑇𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡,𝑖|

𝑛

𝑖=1

 (Eq. 13) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑇𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡,𝑖)

2
𝑛

𝑖=1

 (Eq. 14) 

Machine Learning Hyperparameters Search Space Optimal Hyperparameters 

Value 

XGBoost 

learning_rate [0.01, 0.05, 0.1] 0.05 

max_depth [3, 4, 5] 5 

num_estimators [100, 200, 300] 300 

gamma [0, 0.1, 0.5] 0.1 

colsample_bytree [0.8, 1.0] 1.0 

Support Vector Machine (SVM) 

C [0.1, 1, 10, 100] 100 

gamma [0.01, 0.1, 1] 0.1 

epsilon [0.01, 0.1, 0.2, 0.5] 0.5 

K-Nearest Neighbors (KNN) 

n_neighbors [3, 5, 7, 9] 7 

weights [‘Uniform’, ‘distance’] Uniform 

algorithm [‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’] Auto 

p [1, 2] 1 

Artificial Neural Network (ANN) 

learning_rate [0.01, 0.001, 0.001] 0.001 

batch_size [4, 8, 16, 32] 4 

epochs [50, 100, 200] 200 
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𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑇𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡,𝑖|

𝑇𝑎𝑐𝑡𝑢𝑎𝑙,𝑖
∙ 100%

𝑛

𝑖=1

 (Eq. 15) 

𝑇𝑎𝑐𝑡𝑢𝑎𝑙 represents the actual value of arrival time, and 

𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 signifies the predicted arrival time, generated by the 

predictive model. MAE computed using  Eq. 13 quantifies the 

average magnitude of the differences between the actual and 

predicted arrival times, providing a straightforward measure of 

prediction accuracy. RMSE is expressed in Eq. 14 and is 

particularly useful for capturing the overall variability in 

prediction errors. MAPE offers insights into the relative 

accuracy of predictions, considering the scale of actual arrival 

times, computed using   Eq. 15. 

3. RESULTS AND DISCUSSION 

3.1  Optimal Hyperparameters Estimation  

Table 3 shows optimal hyperparameters which were 

determined by machine learning models. XGBoost were found 

the best of parameters such as a learning rate of 0.05, a maximum 

depth of 5, 300 estimators, a gamma value of 0.1, and a column 

sample by tree of 1.0. SVM performed optimally with a 

regularization parameter 𝐶 of 100, a gamma value of 0.1, and an 

epsilon of 0.5, enhancing classification accuracy and margin 

control. KNN showed best results with 7 neighbors, uniform 

weights, ‘auto’ algorithm, and a power parameter 𝑃 of 1 for the 

Minkowski metric, ensuring effective local pattern recognition. 

ANN achieved optimal performance with a learning rate of 

0.001, a batch size of 4, and training over 200 epochs, allowing 

for gradual learning and precise convergence on complex data 

patterns. 

3.2  Selected Number of Hidden Layers of ANN 

 

Fig. 2. Evaluation Metrics Comparison for ANN Models 

The bar chart in Fig. 2 depicts a comparative examination of 

ANN models with one, two, and three hidden layers, evaluated 

using metrics such as MAE and RMSE in seconds. The findings 

show that the ANN configuration with one hidden layer delivers 

the highest predicted accuracy, with an MAE of 55.12 and 

RMSE of 111.01. On the other hand, models with 2 and 3 hidden 

layers have increasing MAE values 81.31 and 112.42, 

respectively and RMSE values 154.97 and 194.28, respectively, 

suggesting a diminishing return in accuracy as network 

complexity increases. The model with one hidden layer has been 

selected for comparison with other machine learning models.  

3.3 Result of Predictive Models 

In the experiment, machine learning models were used to 

predict bus arrival times, with 20% of the dataset reserved for 

testing. The comparison is made between the predicted arrival 

times and the actual values to assess prediction accuracy. The 

results highlight the errors in the machine learning predictions 

relative to the actual bus arrival times. The model with the 

smallest error, measured in seconds, is considered the best due 

to the importance of precise timing in bus arrival predictions. 

Moreover, we employed k-fold cross-validation to ensure the 

robustness of our models, which allowed us to validate the 

models across different subsets of the data. This approach assists 

in mitigating overfitting and provides a more reliable estimate of 

model performance. 

Table 4 displays the refined performance metrics of machine 

learning models for bus arrival time prediction following 

parameter tuning from Table 3. XGBoost demonstrates 

significant improvement with an MAE of 16 seconds and an 

RMSE of 28.03 seconds. Although LR, SVM and KNN exhibit 

reduced errors compared to their initial configurations, they still 

lag behind XGBoost’s performance. Remarkably, Artificial 

Neural Network exhibits substantial enhancement post-tuning, 

achieving an impressive MAE of 55 seconds, and an  RMSE of 

111.01 seconds.  

 

Table 4. Results from the test set with hyperparameters tuning 

Model 
MAE 

(seconds) 

RMSE 

(seconds) 

Linear Regression (LR) 144.17 236.17 

XGBoost 16 28.03 

Support Vector Machine (SVM) 120.19 242.72 

K-Nearest Neighbors (KNN) 109.28 166.93 

Artificial Neural Network (ANN) 55.12 111.01 

Fig. 3-7 show the prediction versus actual graphs for Linear 

regression, XGBoost, SVM, KNN, and ANN, respectively. In 

these figures, the x-axis shows the actual values, and the y-axis 

shows the expected values. Of these models, XGBoost has the 

best alignment between the expected and actual data, which 

proves more accurate. The figures show that the ANN estimates 

an  arrival time only 2,500 seconds, while the estimates of other 

models typically reach 3,000 seconds. XGBoost can anticipate 
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larger values, perhaps up to 3500 seconds of prediction. While 

the models demonstrated varying levels of success in predicting 

bus arrival times, it is important to acknowledge potential biases 

in our dataset, such as the disproportionate representation of data 

from specific hour of the day and weather conditions. 

Fig. 8 shows a bar chart comparing results of MAPE among 

different models. Among the models analyzed, XGBoost 

demonstrated the lowest MAPE at 2.61%, indicating the highest 

accuracy in predicting bus arrival times. In contrast, LR, SVM, 

and KNN models have higher MAPE values of 35.54%, 23.06%, 

Fig 6. Predicted versus actual plot for KNN 

Fig 8. Model performance comparison results of MAPE 

     Fig 3. Predicted versus actual plot for Linear Regression 

     Fig 4. Predicted versus actual plot for XGBoost 

     Fig 5. Predicted versus actual plot for SVM 

 Fig 7. Predicted versus actual plot for ANN 
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and 17.85%, indicating a poorer predictive precision in this 

context. These findings demonstrate that advanced machine 

learning algorithms, such as XGBoost and ANN, outperform 

classic regression and proximity-based methods in terms of 

predicting accuracy. 

4. CONCLUSIONS   

The study’s examination of machine learning models for 

predicting bus arrival times in Phnom Penh, leveraging historical 

bus data and weather conditions, underscores the superiority of 

Artificial Neural Network and XGBoost algorithms over 

traditional methods. Notably, XGBoost emerges as the standout 

performer, showcasing exceptional predictive capabilities with 

minimal errors, including an MAE of 16 seconds, an RMSE of 

28.03 seconds, and a MAPE of 2.61%. This highlights 

XGBoost’s adeptness in capturing the nuances of bus arrival 

time dynamics, laying a foundation for transit management 

optimization and urban transportation system enhancements. 

The remarkable accuracy achieved by XGBoost can be attributed 

to its ability to discern intricate patterns and temporal 

dependencies within the data, surpassing the capabilities of 

linear regression and distance-based algorithms. Furthermore, 

the integration of weather conditions into the predictive 

modeling process enhances forecast precision by accounting for 

environmental factors that influence transit operations. As a 

result, XGBoost presents a robust solution for optimizing bus 

schedules, minimizing delays, and improving overall commuter 

satisfaction. By harnessing the power of data-driven insights, 

cities can pave the way for smarter, more efficient public 

transportation networks that cater to the evolving needs of urban 

commuters, ultimately fostering sustainable and  accessible 

mobility solutions for Phnom Penh and beyond. 

Future research will focus on developing specialized 

Internet of Things (IoT) devices equipped with sensors to capture 

real-time data directly from buses. These sensors would monitor 

essential factors, providing a continuous stream of data to the 

predictive models using machine learning. The integration of this 

sensor-driven IoT system with real-time data analytics will 

significantly improve the precision and reliability of bus arrival 

predictions. The system can deliver accurate information by 

processing the real-time dataset and up-to-the-minute arrival 

information to passengers via digital displays and mobile 

applications, ultimately enhancing the efficiency of public 

transportation systems and commuter satisfaction. 
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